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On the stability of visco-elastic liquids in 
heated plane Couette flow 
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The stability of thermally stratified plane Couette flow of visco-elastic liquids, 
with respect to disturbances of small amplitude, is considered. It is found that 
an initial state of finite elastic stress is necessary for elasticity to effect stability. 
The critical Rayleigh number of the flow is shown to be decreased for all non- 
zero rates-of-strain. This greater instability is due solely to the variations of the 
apparent viscosity with shear rate. In  this way, the presence of elasticity can 
be said to have a destabilizing effect on the flow. 

Introduction 
The stability of flow of visco-elastic liquids to disturbances of small amplitude, 

although of considerable practical importance, appears to have received little 
attention. In  principle, it  is possible to adapt classical stability analyses in order 
to investigate the effect of elasticity on the stability of such flows as Couette flow, 
Poiseuille flow, thermally stratified, flow, etc. However, in general, the usefulness 
of such an approach is limited by the mathematical difficulties introduced by 
the generalized rheological equations of state needed to describe visco-elastic 
phenomena. 

The following treatment is restricted to the simplest cases and is intended to 
show the broad effects of elasticity on stability. It is shown that, to the first order, 
stability cannot be affected by elasticity unless the liquid concerned is in an 
initial state of finite elastic stress. Thus, the critical Rayleigh number for the 
stability of a horizontal layer of still visco-elastic liquid, heated from below, is 
precisely the same as that for a similar layer of Newtonian liquid. A steady shear 
flow gives the simplest instance of a state of finite stress and so the present 
investigation is concerned with the consequences of a small disturbance to 
thermally stratified plane Couette flow. 

A qualitative decrease in the level of stability is found for those visco-elastic 
liquids in which the first mode of instability is of the same form as occurs in 
Newtonian liquids. The source of this greater instability is the variation in the 
apparent viscosity. 

For certain dilute polymer solutions, an estimate of the decrease in critical Ray- 
leigh Number, at large rates-of-strain, shows the change in the level of stability 
to be about 30 yo, for the least elastic of these solutions. 
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The rheological equations of state 
Oldroyd (1950, 1958) considered rheological equations of state for idealized, 

incompressible, visco-elastic liquids whose behaviour, at  small variable shear 
stresses, is characterized by just three constants: a coefficient of viscosity, yo, 
and two relaxation times, A, and A, ( <  AJ. At small rates-of-strain, the stress 
tensor, pik) and the rate-of-strain tensor, 

of these liquids are related by the rheological equations 

where vi denotes the velocity vector, 8ik is the metric tensor and p is an isotropic 
pressure. 

Oldroyd considered those visco-elastic liquids whose behaviour is defined by 
( 2 )  and, as a generalization of (3)) 

= 2yo(eik +h2Deik/Dt - 2p,eijejk + v,epejLSik), (4) 

where ,uo, ,ul, pZ, v, and v, are arbitrary scalar constants, each with the dimension 
of time. The usual summation convention holds with respect to repeated 
suffices. 

The 'material' derivative, D/Dt,  is a total derivative following a typical fluid 
element, taking into account the rotational, as well as the translational, motion 
of the element. It is defined, for any tensor bik, as 

where 

is the vorticity tensor. 
The most commonly observed properties of non-Newtonian liquids were 

shown by Oldroyd to be exhibited by the liquids defined by equations ( 2 )  and 
(4). These liquids have a variable apparent viscosity in simple shear which 
decreases with increasing rate-of-strain from a limiting value, yo, at  low rates-of- 
strain, to another limiting value yl ( < vo) at high rates-of-strain. They exhibit the 
positive Weissenberg climbing effect, and have a distribution of normal stresses, 
corresponding to an extra tension along the streamlines, together with axial 
symmetry in many types of steady shearing flow. 
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For these properties to be exhibited at  all rates-of-strain, the following restric- 

(T1 > (T2 2 +(Tl > 0 )  (6) 

hllA2 2 0 - 1 1 ~ 2 ,  (7)  

ru1 = 4, ru2 = A,, (8) 

tions, on the constants occurring in (4)) were shown to be necessary: 

where Gl = Y l ( 4  - #Po) + P O L  0-2 = v2(h1- #Po) + P o b  

Equations of the undisturbed state 
Rectangular Cartesian co-ordinates are chosen with the liquid lying between 

two horizontal plates. The lower plate, in the plane y = 0,  is at rest and is main- 
tained at  a higher temperature than the upper plate which is in the plane y = h, 
and has velocity (yh, 0, 0 )  where y is constant. 

The equations of steady motion may be written in the form 

where gi = (0, g, 0) .  There is a solution of these equations in which the pik are 
all constant and 

(10) splay = -Pg. 

Under these conditions, equations ( 2 )  and (4) can be solved (Oldroyd 1958) to 
give the stresses required to maintain a steady shearing flow, namely: 

Pll = { ( 2 4 - w w ) -  (2A2-v2)h0y2-p, 

1722 = P33  = - { V l m 4  - .2> TOY2 -P, 1 (11) 

P12 = Pi2 = TOyF(Y), P23  = P!23 = '91313 = 2 4 3  = O ,  

where F ( y )  = ( l + ~ , y ~ ) / ( l + ( ~ ~ y ~ ) .  

have a single variable coefficient of viscosity, 7 = yoF(y) .  

while the energy equation reduces to 

The form of the shear stress, p12, is such that the liquid may be considered to 

The equation of continuity is identically satisfied in the undisturbed state 

o = i i a 2 T / a y 2 ,  ( 12 )  

where T is the temperature and k the thermal diffusivity. From (la),  it follows 
that T = To + Py, where p is the temperature gradient. The suffix 0 refers to con- 
ditions at  the lower plate. Using the equation of state 

P = Po{1-4T-T,)), 

( 10) becomes aPPY = - SPo(1- .PY)- (13) 
If a liquid is initially in a state of zero stress, a small-amplitude disturbance 

will give rise to  arate-of-strain tensor, eik, and a stress tensor,p;,, with components 
of the first order of smallness. Under these conditions, the linearized form of 
equation (4) is pi, +Al  ap;,pt = 2y0(ei, + A 2  &,,/at). 
It is usual to assume, where it cannot be proved, that the equations governing 
neutral stability are given by taking all time variations to be zero, i.e. by con- 
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sidering states of steady secondary flow. This reduces the rheological equations 
of state to those for a Newtonian liquid. It follows that the introduction of 
elasticity can have no effect on stability unless there is an initial distribution of 
finite elastic stress. 

The linearized equations 

(u + yy, v, w), a temperature T + 6 and a stress tensor 
A small amplitude disturbance will create a velocity field of the form 

Pik = P;k +P&- ( P  +PI &ik, (14) 
where Pik and P refer to the initial state and all the quantities u, v, w, 6,  pik and 
p are sufficiently small to permit the equations to be linearized. 

In  the absence of shear, the steady cellular pattern of flow, which occurs as 
first mode of instability for a general disturbance, is that of the familiar BBnard 
cells. The introduction of shear makes such a steady cellular motion no longer 
possible for a disturbance of general type. However, it was shown by Jeffreys 
(1928) that, in a Newtonian liquid, a steady cellular motion can still exist but 
only for disturbances that are independent of displacement in the direction of 
the mainstream flow, i.e. the x-direction. In  this mode, the flow is composed of 
roll cells whose longitudinal axis is in the x-direction and about which fluid 
particles describe spiral paths. The only effect that the presence of shear has on 
the stability of flow of a Newtonian liquid was shown by Jeffreys to be that of 
stabilizing disturbances that are periodic in the x-direction, the critical Rayleigh 
number being unaffected. 

It seems reasonable to suppose that, in a liquid which is slightly elastic, the 
same pattern of motion, as for a Newtonian liquid, will occur as the first mode of 
instability. In the liquids which are more strongly elastic, the first mode may 
well be considerably different in form, but such liquids fall outside the scope of 
the present work. It is assumed, then, that only those disturbances that are 
independent of displacement in the x-direction need be considered as it is dis- 
turbances of this type which give rise to the first mode of instability. 

Hence, the equations governing the development of a small disturbance to the 
thermally stratified Couette flow are 

av aw -+- = 0, 
a Y  a2 

where 
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Using (13), equation (17) reduces to 

and p may now be regarded as constant. Eliminating p between equations (18) 
and (20) gives 

The equations for neutral stability 
As is customary in stability analyses, a disturbance is Fourier-analysed into 

its harmonic modes and the wave-numbers considered separately. As indepen- 
dence of x has been assumed already, the solutions of the linearized equations are 
taken to be of the form: 

(22) i P;k(Y,z; t )  = P;k(Y)exP(Q~+iKz), 
O(y,z; t )  = O(y)exp(!Jt+i~z), 

u(y,z; t )  = u(y)exp(Qt+i~z),  

and similarly for v and w. 
Equations (15), (16), (19) and (21) become, on using (22): 

dv/dy+i~w = 0, ( 2 3 )  

-V% = 
Q 
K2 

where V2 = d2/dy2- K~ and equation (23) has been used in equation (26). 

are 
The linearized rheological equations for the stresses occurring in equation (26) 

(1 + A, f2)pL3 - ( irO/~)  { F ( y )  + A 2  Q} (d2/dy2 + K ~ )  v = 0, 

(1 +hif22)P;;2+viyPi2-2ro{H(y) -h,f2}dv/dY+roy{v,F(y) -2v,)du/dy = 0,  

('+'if2)P;3+viyPi2+2ro{F(y) +h2SZ}dv/dy+roy{viP(y) - 2~2}du/dy = 0. 

Hence 

In their treatment of the classical problem, Pellew & Southwell (1940) were 
able to prove that neutral stability conditions arise from steady disturbances. 
The time-dependent nature of the stresses in the above expressions appear to 
prevent their proof from being adapted to  the present equations. It has to be 
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assumed, therefore, that the equations for neutral stability are given when the 
disturbances are restricted to be steady, i.e. $2 = 0. 

Substituting the simplified forms of (27) and (28) into equation (26) and then 
eliminating 8 by means of equation (25) gives 

(h 'F(y )  v6 - K2c%pg} V = 0,  (29) 

where v = yo/p, is the kinematic viscosity. A substitution of y = h< into equa- 
tion (29) gives the non-dimensional form of the stability equation for a visco- 
elastic liquid 

(0' - v = - (Ra a'/F(r)} V ,  

where D = d/d& a = Kh, and R a  = - apgh4/kv is the Rayleigh number based on 
70. 

For a given value of y, solutions of the stability equation involve just the two 
parameters, Ra and a. This latter parameter is characteristic only of the size 
of the cells of the convective motion: the shape of the cells is not specified. As 
there are no fixed vertical boundaries in the flow, the range of values that a can 
take is unrestricted. The cell pattern that occurs is the one for which the corre- 
sponding Rayleigh number has a minimum value. This critical value, (Ra),,rit 
is the criterion of thermal stability of the flow in that, if it  is exceeded, a steady 
cellular pattern of flow will develop. The value of a for this particular cell pattern 
corresponds to the critical Rayleigh number. 

It is, perhaps, worthwhile noting, at  this stage, that non-Newtonian inelastic 
liquids are covered by the above analysis. For example, the Reiner-Rivlin model 

pik = aleik + e$j ejk ,  

where a, and a2 are arbitrary functions of the principal invariants of the matrix 
eii, leads essentially to the same equations and results as the Oldroyd fluid model 
considered above, for which an apparent viscosity is the only parameter intro- 
duced by the non-Newtonian nature of the flow. 

It is known (Pellew & Southwell 1940) that the least value of the Rayleigh 
number for which a solution of the classical stability equation exists is 1708, 
corresponding to a = 3.13. The critical Rayleigh number for the flow of a visco- 
elastic liquid may be written therefore in the form 

(Ra)crit = 1708J'(~)* (31) 

As F ( y )  is a decreasing function of y, it  follows a t  once that the critical Rayleigh 
number is smaller for a visco-elastic liquid than for a Newtonian liquid, at any 
non-zero rate-of-strain. 

Numerical values for crl and v2 are needed in order to find the quantitative 
decrease in ( 2 2 ~ ) ~ ~ ~ ~  as the rate-of-strain is increased. Of the constants involved 
in these parameters, values for A, and A, only have been deduced from experi- 
mental results. However, from observations that have been made on dilute 
polymer solutions by Thoms & Strawbridge (1953), it appears that the decrease 
in the apparent viscosity is considerably greater at large rates-of-strain than that 
predicted by Oldroyd's theory. Thus, the theoretical decrease in P(y ) ,  at large 
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rates-of-strain, provides a conservative estimate of the actual decrease in the 
critical Rayleigh number. Now, for large rates-of-strain P(y )  N cZ/gl, and from 
condition (7), r~,/c, = h,/h,. This gives, as a simplified form of (31), 

(Ra),,,it = 1708hz/h1. ( 32) 

For the dilute polymer solutions mentioned above, the ratio hz/hl decreased 
from 2/3 to 3/13 as the polymer concentration was increased. Thus, even on this 
conservative estimate, the decrease in the critical Rayleigh number for the most 
weakly elastic polymer solution is about 30 %. 

My thanks are due to Dr B. R. Morton for his help and guidance throughout 
the preparation of this paper. I should also like to thank the referees for their 
suggestions. 
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